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Introduction

m What do we mean by Statistics for Poets?

m A book by Bernard Berkowitz (1991): Statistics for Poets:
A manual For those So Inclined

m Statistics as a liberal art.

m The lowest level statistics class.

m At Macalester, the course that most closely alligns with this
description is Math 153: Data Analysis and Statistics.
m What do we mean by Statistical Modeling for Poets?

m Actually, I'm not really sure. It's a catchy title! But it does
conjure up the right mental image ...
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Motivation

m There is an on-going revolution at Macalester in the way
introductory statistics is taught. Math 155 incorporates
modeling, statistics, calculus, and computation.

m Many reasons why Math 153 should evolve with Math 155:

Several justifications used to argue for Math 155-style course
can be applied to Math 153 (e.g. students entering with more,
“cookbook” procedures are poor, formulas are of little value).

Not constructive to have a big gap between Math 153 and
Math 155 (e.g. we would be handicapping students who take
Math 153, like it, and want to do more statistics!).

Not everyone takes Math 155 (and “poets” use statistics too!).



Old/New Math 153
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The Old Math 153

Numerical and Graphical descriptive statistics: mean, median,
sd, histograms, boxplots, etc.

Probability: Unions, Intersections, Complements, Conditional.
Simpson's Paradox.

Discrete and Continuous Probability Distributions, in
particular, the Binomial and the Normal.

Sampling Distributions, in particular, the CLT.

[@ One sample confidence intervals.

One sample testing, including power, multiple testing, etc.
B Two sample inference.

E1 Correlation and Simple linear regression.
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The New Math 153

Numerical and Graphical descriptive statistics (Intro to R)
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Correlation and Univariate models (w/out inference)
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Probability: Unions, Intersections, Complements, Conditional.
Simpson's Paradox, Multivariate models (w/out inference)
Binomial and Normal Distributions, and, briefly, the CLT.
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Confidence intervals (on general model coefficients).

N &

Hypothesis testing (on general model coefficients).

Power, multiple testing, etc.

Interaction models.
Multi-collinearity, R?, Adjusted-R?, F-tests.

B



Example # 1
®000

Example # 1: Body fat data

m BodyFat.csv contains body circumference measurements for
252 men, along with estimates of the percentage of body fat
determined by underwater weighing.

BodyFat Age Weight Height Neck Chest Abdomen

1 12.3 23 154.25 67.75 36.2 093.1 85.2
2 6.1 22 173.25 72.25 38.5 93.6 83.0
3 256.3 22 154.00 66.25 34.0 95.8 87.9
4 10.4 26 184.75 72.25 37.4 101.8 86.4
5 28.7 24 184.25 71.25 34.4 97.3 100.0
6 20.9 24 210.25 74.75 39.0 104.5 94 .4

m For more details, read the handout on this data set.

m We will fit models for BodyFat variable.
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Example # 1: Body fat data

m What do you think the relationship is between BodyFat and
Height: positive, negative, or none?
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Example # 1: Body fat data

m What do you think the relationship is between BodyFat and
Height: positive, negative, or none?

> 1m(BodyFat “Height,data=bf)$coefficients

(Intercept) Height
33.4944938 -0.2044753
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Example # 1: Body fat data

m What do you think the relationship is between BodyFat and
Height: positive, negative, or none?

> 1m(BodyFat “Height,data=bf)$coefficients

(Intercept) Height
33.4944938 -0.2044753

> summary (1m(BodyFat “Height,data=bf))$coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) 33.4944938 10.1095831 3.313143 0.001059050
Height -0.2044753 0.1439210 -1.420747 0.156636257
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Example # 1: Body fat data

m Nearly all students say that there is a negative relationship.
Why?
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Example # 1: Body fat data

m Nearly all students say that there is a negative relationship.
Why?
m Because they are (tacitly) holding Weight fixed.
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Example # 1: Body fat data

m Nearly all students say that there is a negative relationship.
Why?

m Because they are (tacitly) holding Weight fixed.

> summary (1m(BodyFat “Height+Weight,data=bf))$coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) 32.4046404 7.46991673 4.338019 2.090472e-05
Height -0.7025959 0.11178118 -6.285457 1.452798e-09

Weight 0.2013835 0.01393161 14.455145 8.444594e-35
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Example # 1: Body fat data

m Consider the relationship between BodyFat and Weight.
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Example # 1: Body fat data

m Consider the relationship between BodyFat and Weight.

> summary (1m(BodyFat “Weight,data=bf))$coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) -12.0515789 2.58138682 -4.668645 4.950144e-06
Weight 0.1743886 0.01423722 12.248779 2.473116e-27
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Example # 1: Body fat data

m Consider the relationship between BodyFat and Weight.

> summary (1m(BodyFat “Weight,data=bf))$coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) -12.0515789 2.58138682 -4.668645 4.950144e-06
Weight 0.1743886 0.01423722 12.248779 2.473116e-27

m What happens if we include Abdomen circumference?
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Example # 1: Body fat data

m Consider the relationship between BodyFat and Weight.

> summary (1m(BodyFat “Weight,data=bf))$coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) -12.0515789 2.58138682 -4.668645 4.950144e-06
Weight 0.1743886 0.01423722 12.248779 2.473116e-27

m What happens if we include Abdomen circumference?

> summary (1m(BodyFat “Weight+Abdomen,data=bf))$coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) -45.9523732 2.60501273 -17.639980 9.790287e-46
Weight -0.1480031 0.02080957 -7.112259 1.207060e-11

Abdomen 0.9895044 0.05671626 17.446573 4.486591e-45
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Example # 2: Birthdays of hockey players ... a possible

M-CAST?

m This example was motivated by Gladwell, in Outliers: The
Story of Success.

m Data was gathered on every player who played in the National
Hockey League's (NHL's) regular season through the 2008-09
season. We are interested in the birthdays of 6,391 players.

m We covered this after introducing discrete distributions,
including the Binomial. The students are shown a plot of the
birth month frequencies, and asked to comment.
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Birth month frequencies of NHL players through 2008-09
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Example # 2: Birthdays of hockey players ... a possible

M-CAST?

m Observations:
m “There is a downward trend”, or
® “January has many more observations than December"

m The students explain why the graph is surprising: they had
expected to see something “flat”.

m If appropriate, the professor can introduce a goodness-of-fit
test. | use this example to allude to hypothesis testing, by
performing a simple simulation.
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Example # 2: Birthdays of hockey players ... a possible

M-CAST?

At this point, the students have seen rbinom, the function in
R which simulates the flip of a coin. Here, we simply have
6,391 coin flips.

How do we know the chance of “heads” (born in January)?

We don't ... but we believe that it should be, roughly, 1/12,
or 31/365. This is purely an assumption (our Hp).

m Under this Hy, we can replay history 1,000,000 times, say:
JanDist = rbinom(1000000, size=6391, prob=31,/365)

A histogram of JanDist represents the sampling distribution
for the number of births in January.
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Sampling distribution, under Hy, for January births
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Example # 2: Birthdays of hockey players ... a possible

M-CAST?

m How compatible is the observation of 668 births in January
with Ho?

m How likely is it that we observe (at least) 668 births, under
Ho? (easily computable with 1 command line).

m Students may question the assumption of uniform births, and
this can lead to an excellent discussion (e.g. what data could
we obtain to form a more reasonable Hy?).

m A more intriguing topic for debate: Why is this happening?

m Phenomenon is known as the relative age effect: in a group of
kids, there are performance advantages of being the eldest.
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When did the RAE begin to manifest itself?
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Example # 3: Judging bias in diving scores

= Diving2000.csv contains information on all 10,787 dives at
the 2000 Olympics in Sydney. Relevant variables are: Diver,
Country, JScore, Judge, JCountry, and Same. JScore is the
judge's score, and Same (Yes or No) indicates whether the
judge is from the same country as the diver.

Diver Country JScore Same

1 ABALLI Jesus-Iory CUB 7.0 No
2 ABALLI Jesus-Iory CUB 7.5 No
3 ABALLI Jesus-Iory CUB 7.5 No
4 ABALLI Jesus-Iory CUB 8.0 No

m Is there a bias in favor of divers when they are from the same
country as a judge?
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Example # 3: Judging bias in diving scores

m There are many possible ways to answer this question, but
let’s start with something simple:

> summary (1m(JScore~Same,data=dive))$coefficients
Estimate Std. Error t value Pr(>ltl)

(Intercept) 6.813711 0.01436646 474.279200 0.000000e+00
SameYes 0.648072 0.08420448 7.696408 1.521706e-14
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Example # 3: Judging bias in diving scores

m There are many possible ways to answer this question, but
let’s start with something simple:

> summary (1m(JScore~Same,data=dive))$coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) 6.813711 0.01436646 474.279200 0.000000e+00
SameYes 0.648072 0.08420448 7.696408 1.521706e-14

m Possible conclusions?
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Example # 3: Judging bias in diving scores

m There are many possible ways to answer this question, but
let’s start with something simple:

> summary (1m(JScore~Same,data=dive))$coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) 6.813711 0.01436646 474.279200 0.000000e+00
SameYes 0.648072 0.08420448 7.696408 1.521706e-14

m Possible conclusions?

m What does this ignore? Many modeling paths can be taken,
and this always leads to a good class discussion.
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Example # 3: Judging bias in diving scores

m Previous analysis treats all judges the same ...
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Example # 3: Judging bias in diving scores

m Previous analysis treats all judges the same ...

m Can control for individual judges to account for
leniency /severity of each.
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Example # 3: Judging bias in diving scores

m Previous analysis treats all judges the same ...

m Can control for individual judges to account for
leniency /severity of each.

m Can fit an interaction model between Same and Judge.
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Example # 3: Judging bias in diving scores

m Previous analysis treats all judges the same ...

m Can control for individual judges to account for
leniency /severity of each.

Can fit an interaction model between Same and Judge.

Perhaps a bigger issue is that dives associated with
“Same=VYes" are better. Why might this be?
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Example # 3: Judging bias in diving scores

m Previous analysis treats all judges the same ...

m Can control for individual judges to account for
leniency /severity of each.

Can fit an interaction model between Same and Judge.

Perhaps a bigger issue is that dives associated with
“Same=VYes" are better. Why might this be?

Can try to control for the quality of the dive ...
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Example # 3: Judging bias in diving scores

m My naive way of doing this is by finding the mean score given
to each dive using all other judges other than the one being
considered. Call this variable MeanScore.

MeanScore

No Yes



Example # 3
ooooe

Example # 3: Judging bias in diving scores

m Now model the deviances from MeanScore by Same:

> Deviances = dive$JScore-MeanScore
> summary (1m(Deviances~Same,data=dive))$coefficients

Estimate Std. Error t value Pr(>ltl)

(Intercept) -0.007256755 0.00398040 -1.823122 6.831257e-02
SameYes 0.249294972 0.02332987 10.685658 1.612278e-26
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Example # 3: Judging bias in diving scores

m Now model the deviances from MeanScore by Same:

> Deviances = dive$JScore-MeanScore
> summary (1m(Deviances~Same,data=dive))$coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) -0.007256755 0.00398040 -1.823122 6.831257e-02
SameYes 0.249294972 0.02332987 10.685658 1.612278e-26

m Magnitude of bias has decreased, but it is still positive, and
significant ...
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Concluding Remarks

m Math 153 has no pre-requisite.

m Math 153 sometimes includes a few virulent “anti-statistics”
types, but the material is accessible to them, and the response
has been very favorable!

m With regards to material in the introductory statistics class,
we have focused on changing what we cover, in addition to
how we cover it.

m The “it depends” answer does not fit well with the traditional
introductory statistics course.

m Gathering relevant, interesting, data is a constant challenge ...
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