Keeping it R.E.A.L.

Anthony Tongen Associate Professor

JAMES MADISON UNIVERSITY.

NSF-UBM

- Multiple team-taught courses per year
 - Mathematical Models in Biology
 - Biometry
 - Biomechanics/Biophysics
- Two semester 'Calculus with Functions I,II' that is equivalent to Calculus I (whatever equivalent means)
- Interdisciplinary research with biologists

James Madison University's Computational Courses

- Math 248 Computers and Numerical Algorithms
 - Programming in a high-level language
 - Introduction to algorithms involving rootfinding, solving systems of linear equations, integrating, differentiating, and interpolating.

James Madison University's Computational Courses

- Math 448 Numerical Analysis
 - Further study and analysis of algorithms used to solve nonlinear equations, systems of linear and nonlinear equations. Includes iterative methods.
- Math 449 Numerical Analysis for Differential Equations
 - Further study and analysis of numerical techniques to solve ordinary and partial differential equations.

Keeping it R.E.A.L.

Keeping it R.E.A.L.: Research Experiences for All Learners Research and Classroom Projects in Computational Mathematics

> Carla D. Martin and Anthony Tongen James Madison University

> > DRAFT version: May 2010

MOSAIC emphases

- Algorithmic development
 - Converting words to a written algorithm (mathematical expression)
 - Converting the written algorithm basic code to perform the 'experiment'
- Computers aren't perfect!!!!!
 - Examples that show that computers don't actually know everything and we are just trying to pry something out of them

Project #1

 Consider an iterated function that takes as input a number between zero and one and outputs either

i) a number that is twice as big if the original result is less than one

OR

ii) a number that is twice as big minus one if the original result is greater than one.

The output value becomes the input value for the next iteration.

Bernoulli Map

 Also known as the dyadic transformation or 2n mod 1 problem:

$$x_{n+1} = \begin{cases} 2x_n, & \text{if } 2x_n < 1\\ 2x_n - 1, \text{if } 2x_n \ge 1 \end{cases}$$

Treat as a fixed point iteration with initial condition x₀.

Bernoulli Map

- Find the initial value(s) that never changes when plugged into the Bernoulli map.
- Find period two and period four orbits. What determines the period of the orbit?
- Given *n*, can you always find a period *n* orbit? If so, what is it?
- Introduce cobweb diagram and terminology of fixed point iteration

JAMES MADISON UNIVERSITY.

Fixed Point Iterations $x_{n+1} = \begin{cases} 2x_n, & \text{if } 2x_n < 1\\ 2x_n - 1, \text{if } 2x_n \ge 1 \end{cases}$

- Find fixed point(s)
- Fixed point iteration
- Cobweb diagram
- Periodic orbits

AMES MADISON UNIVERSI

Computational Bernoulli Map

 $2x_n, \quad \text{if } 2x_n < 1$

Computational Bernoulli Map

ers

Conway's Prime Producing Machine*

 $\frac{17}{91}, \frac{78}{85}, \frac{19}{51}, \frac{23}{38}, \frac{29}{33}, \frac{77}{29}, \frac{95}{23}, \frac{77}{19}, \frac{1}{17}, \frac{11}{13}, \frac{13}{11}, \frac{15}{14}, \frac{15}{2}, \frac{55}{1}$ A B D H E F I R P S T L M N

- The input is 2.
- A step involves multiplying the current number by the leftmost member of the above table which gives a whole number answer.
- Output happens whenever a pure power of 2 occurs.

*Guy, RK, "Conway's Prime Producing Machine", Mathematics Magazine, 56:1, 26-33, 1983.

Conway's Prime Producing Machine

23 29 77 95 17 78 19 13 15 15 55 7711 91'85'51'38'33'29'23'19'17'13'11'14' 2'1 A B E F R Ρ S Τ LM N 2 425 A B 156 Μ 15 B 390 S 132 825 N S 330 E 116 290 E F 308 E 725

AMES MADISON UNIVERSITY.

Conway's Prime Producing Machine

- Horribly inefficient
- Importance of using types
 - Using type double without any modifications, the students cannot produce the first prime number
 - Using int isn't too much better
- Impact of roundoff error

A Rather Normal Project

- A normal number is a number whose digits are equally distributed.
- What is an example of a normal number?

Normal number facts

- The set of normal numbers is dense in the real numbers.
- Easier to find non-normal numbers; focus on values between zero and one.
- Every rational number is eventually periodic and therefore not normal.
- Two irrational numbers have been proven to be normal: Champernowne's number and the Copeland-Erdos constant.

Last example

• Go to town!

$$x_{n+1} = \begin{cases} x_n / 2, & \text{if } x_n \text{ is even} \\ 3x_n + 1, & \text{if } x_n \text{ is odd} \end{cases}$$

Other possibilities

- Chaotic Rabbits
- Fractions of fractions
- Diffusion by chance
- Follow the rules!!
- Getting to the root of the problem

Conclusions

- The previous examples allow the students to go from concept to algorithm to code
- Conway's Prime Producing Machine and the Bernoulli Map are two examples that help students better understand how computers store real values and effectively demonstrate roundoff error.
- Fun depending on how you define fun!

Thanks

- Dr. Carla Martin
- Numerous Math 248 students and future Math 235 students

