Automatic Differentiation using MATLAB OOP

Richard D. Neidinger
Davidson College

MOSAIC Kick-Off Workshop, IMA, MN
Summer 2010
Re consider basic questions in Calculus and in Programming:

- How are derivatives calculated?
- What is object vs. procedure oriented programming?
- What is a function to a computer?
Alternatives for computing derivatives:

- Slope for numerical approximation.
- Rules for symbolic expression.
- Rules for numerical values!

If \(h(x) = u(x) \cdot v(x) \), then

\[
\text{symbols} \quad h'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) \\
\text{values} \quad h'(a) = u'(a) \cdot v(a) + u(a) \cdot v'(a)
\]
Programming the product rule:

Combine \([u(a), u'(a)]\) and \([v(a), v'(a)]\) and a "times operation" to make

\([h(a), h'(a)] = [u(a) \times v(a), u'(a) \times v(a) + u(a) \times v'(a)].\]

- **Procedural approach**: make up procedure adtimes on native data type (array of two doubles).
- **OOP approach**: make up an object class and overload native operations as methods on such objects.
Suggest AD in any course with computing environment:

- Designed for numerical computation.
- Allows operator overloading, preferably in OOP.
- Computing derivatives is desirable.

MATLAB* is ideal!
AD topic in my Numerical Analysis.

*Release 2008a or later
How compute “exact” derivatives?
Symbolic?
Not in basic MATLAB.
Character string programming?
Project too massive!
Automatic Differentiation?
Use derivative rules on numerical values, best implemented with OOP.
classdef valder

 % VALDER class implements Automatic Differentiation by operator overloading

 properties
 val %function value
 der %derivative value or gradient vector
 end

 methods
 function obj = valder(a,b) ...
 function vec = double(obj) ...
 function h = plus(u,v) ...
 function h = uminus(u) ...
 function h = minus(u,v) ...
 function h = mtimes(u,v) ...
 function h = mrdivide(u,v) ...
 function h = mpower(u,v) ...
 function h = exp(u) ...
 function h = log(u) ...
 function h = sqrt(u) ...
 function h = sin(u) ...
 function h = cos(u) ...
 function h = tan(u) ...
 function h = asin(u) ...
 function h = atan(u) ...
 end
end
function obj = valder(a,b)
 %VALDER class constructor; only the bottom case is needed.
 if nargin == 0 %never intended for use.
 obj.val = [];
 obj.der = [];
 elseif nargin == 1 %c=valder(a) for constant w/ derivative 0.
 obj.val = a;
 obj.der = 0;
 else
 obj.val = a; %given function value
 obj.der = b; %given derivative value or gradient vector
 end
end

function vec = double(obj)
 %VALDER/DDOUBLE Convert valder object to vector of doubles.
 vec = [obj.val, obj.der];
end
function h = sin(u)
 %VALDER/SIN overloads sine with a valder object argument
 h = valder(sin(u.val), cos(u.val)*u.der);
end

function h = mtimes(u,v)
 %VALDER/MTIMES overloads * for at least one valder object argument
 if ~isa(u,'valder') %u is a scalar
 h = valder(u*v.val, u*v.der);
 elseif ~isa(v,'valder') %v is a scalar
 h = valder(v*u.val, v*u.der);
 else
 h = valder(u.val*v.val, u.der*v.val + u.val*v.der);
 end
end
>> x=valder(3,1);
>> x*sin(x^x)
ans =
 valder

Properties:
 val: 1.2364
 der: -15.9882

Methods

>>
>> [3*3, 1*3+3*1]
ans =
 9 6
>> [sin(9), cos(9)*6]
ans =
 0.4121 -5.4668
>> [3*0.4121, 1*0.4121+3*-5.4668]
ans =
 1.2363 -15.9883
Application to One-variable Functions and Newton’s Method

- Just returns the derivative value at one point?
- But that is exactly what a function does!
\[f(x) = e^{-\sqrt{x}} \sin(x \ln(1 + x^2)) \]

```matlab
function vec = fdf(a)
% FDF takes a scalar and returns the double vector [ f(a), f'(a) ]
% where f is defined in normal syntax below.
x = valder(a,1);
y = exp(-sqrt(x)) * sin(x*log(1+x^2));
vec = double(y);
```

MATLAB output:

```
>> fdf(3)
ans =
   0.1035   0.5589
>>
>> fplot(@(x) fdf([0 5 -1 1]),
>> legend('f(x)', 'df/dx')
```

This MATLAB code defines a function `fdf` that takes a scalar `a` and returns a double vector with the function value and its derivative at `a`. The function is then plotted using `fplot`. The legend for the plot is set to display the function and its derivative.
function root = newtonfdf(a)
%NEWTON seeks a zero of the function defined in fdf using the initial a
% root estimate and Newton's method (with no exception protections).
% fdf uses @valder to return a vector of function and derivative values.
delta = 1;
while abs(delta) > .000001
 fvec = fdf(a);
 delta = fvec(1)/fvec(2); %value/derivative
 a = a - delta
end
root = a;

>> format long
>> newtonfdf(5)
a =
 4.869131364499543
a =
 4.887047004677484
a =
 4.887055967440699
a =
 4.887055967455543
ans =
 4.887055967455543
Application to Multivariable Gradients

- All derivative rules generalize with gradient in place of derivative!
- If \(h(x,y,z) = \sin(u(x,y,z)) \)
 then \([h_x, h_y, h_z] = \cos(u(x,y,z)) *[u_x, u_y, u_z]\)
- If \(h(x,y) = u(x,y)*v(x,y) \)
 then \([h_x, h_y] = [u_x, u_y]*v + u* [v_x, v_y]\)
- Thus, the valder class works with gradients as the der property!
```matlab
x = valder(3, [1 0]);
y = valder(5, [0 1]);
x*y
ans =
    valder

Properties:
    val: 15
    der: [5 3]

Methods

sin(x*y)
ans =
    valder

Properties:
    val: 0.6503
    der: [-3.7984 -2.2791]

Methods
```
function vec = fgradf(a0,v0,h0)
% FGRADF computes tennis serve range and sensitivites to parameters
% input is angle a, velocity v, and height h of serve
% output is horizonal range f, df/da, df/dv, df/dh
a = valder(a0,[1 0 0]); %angle in degrees
v = valder(v0,[0 1 0]); %velocity in ft/sec
h = valder(h0,[0 0 1]); %height in ft
rad = a*pi/180;
tana = tan(rad);
vhor = (v*cos(rad))^2;
f = (vhor/32)*(tana + sqrt(tana^2+64*h/vhor)); %horizontal range
vec = double(f);
function root = newtonFJF(A)
% NEWTONFJF seeks a zero of the function defined in FJF using the initial A
% root estimate and Newton's method (with no exception protections).
% FJF returns the value and Jacobian of a function F:R^n->R^n where
% A is a nx1 matrix input, F is nx1 matrix output and J is nxn Jacobian.
delta = 1;
while max(abs(delta)) > .000001
 [F,J] = FJF(A);
 delta = J\F; % solves the linear system JX=F for X
 A = A - delta;
end
root = A;

MATLAB 7.7.0 (R2008b)
>> newtonFJF([1;1;-1])
ans =
 0.5000000000000000
 -0.0000000000000000
 -0.523598775598299
function [F, J] = FJF(A)
 %FJF returns the value and Jacobian of a function F:R^3->R^3.
 % A is a 3x1 matrix input, F is 3x1 matrix output and J is 3x3 Jacobian.
 x = valder(A(1),[1 0 0]);
 y = valder(A(2),[0 1 0]);
 z = valder(A(3),[0 0 1]);
 f1 = 3*x-cos(y*z)-1/2;
 f2 = x^2 -81*(y+0.1)^2+sin(z)+1.06;
 f3 = exp(-x*y)+20*z+(10*pi-3)/3;
 values = [double(f1); double(f2); double(f3)];
 F = values(:,1);
 J = values(:,2:4);
Higher-Order AD and Taylor Series

- Instead of carrying just the first derivative, carry a vector of Taylor series coefficients.
- Algorithms for operations on series are the methods for “derivative rules.”
- For \(u(x) = u_0 + u_1(x-a) + u_2(x-a)^2 + \cdots \)

 series object \(u \) will have properties:

 val: \(u_0 \)

 coef: \([u_1, u_2, \ldots, u_n] \)
classdef series
 % SERIES class implementing AD to compute series coefficients.
 % ...% properties
 val %function value (constant term)
 coef %vector of Taylor coefficients, linear to highest term
end
methods
 function obj = series(a,der,order)
 function vector = double(obj)
 function h = plus(u,v)
 function h = uminus(u)
 function h = minus(u,v)
 function h = mtimes(u,v)
 function h = mrdivide(u,v)
 function h = sqrt(u)
 function h = exp(u)
 function h = log(u)
 function h = mpower(u,r)
 function [s, c] = sincos(u)
 function h = sin(u)
 function g = cos(u)
 function h = tan(u)
 function h = asin(u)
 function h = atan(u)
end
end
>> x=series(3,1,4);
>> x*sin(x*x)
an=

 series

 Properties:
 val: 1.2364
 coef: [-15.9882 -30.4546 82.6547 145.6740]

Methods
>> ans.coef(4)*factorial(4)
an=
 3.4962e+003

fx >>
function vec = fseries3(a)
% FSERIES returns a vector of Taylor coefficients about a to order 3.
% f is defined in normal syntax below.
x = series(a,1,3);
y = cos(x)*sqrt(exp(-x*atan(x/2)+log(1+x^2)/(1+x^4)));
vec = double(y);
Materials available:

- MATLAB M-files and preprint available at: www.davidson.edu/math/neidinger/publicat.html
Overloading Other Operations
MATLAB Operators and Associated Functions

The following table lists the function names for common MATLAB operators.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Method to Define</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a + b</code></td>
<td><code>plus(a,b)</code></td>
<td>Binary addition</td>
</tr>
<tr>
<td><code>a - b</code></td>
<td><code>minus(a,b)</code></td>
<td>Binary subtraction</td>
</tr>
<tr>
<td><code>-a</code></td>
<td><code>uminus(a)</code></td>
<td>Unary minus</td>
</tr>
<tr>
<td><code>+a</code></td>
<td><code>uplus(a)</code></td>
<td>Unary plus</td>
</tr>
<tr>
<td><code>a.*b</code></td>
<td><code>times(a,b)</code></td>
<td>Element-wise multiplication</td>
</tr>
<tr>
<td><code>a*b</code></td>
<td><code>mtimes(a,b)</code></td>
<td>Matrix multiplication</td>
</tr>
<tr>
<td><code>a./b</code></td>
<td><code>rdivide(a,b)</code></td>
<td>Right element-wise division</td>
</tr>
<tr>
<td><code>a</code></td>
<td><code>ldivide(a,b)</code></td>
<td>Left element-wise division</td>
</tr>
<tr>
<td><code>a/b</code></td>
<td><code>mrdivide(a,b)</code></td>
<td>Matrix right division</td>
</tr>
<tr>
<td><code>a</code></td>
<td><code>mldivide(a,b)</code></td>
<td>Matrix left division</td>
</tr>
<tr>
<td><code>a.^b</code></td>
<td><code>power(a,b)</code></td>
<td>Element-wise power</td>
</tr>
<tr>
<td><code>a^b</code></td>
<td><code>mpower(a,b)</code></td>
<td>Matrix power</td>
</tr>
</tbody>
</table>
classdef valder
 % VALDER class implements Automatic Differentiation by operator overloading
 properties
 val %function value
 der %derivative value or gradient vector
 end
 methods
 function obj = valder(a,b)
 function vec = double(obj)
 function h = plus(u,v)
 function h = uminus(u)
 function h = minus(u,v)
 function h = mtimes(u,v)
 function h = mrdivide(u,v)
 function h = mpower(u,v)
 function h = exp(u)
 function h = log(u)
 function h = sqrt(u)
 function h = sin(u)
 function h = cos(u)
 function h = tan(u)
 function h = asin(u)
 function h = atan(u)
 end
end
function h = exp(u)
 %VALDER/EXP overloads exp of a valder object argument
 h = valder(exp(u.val), exp(u.val)*u.der);
end

function h = log(u)
 %VALDER/LOG overloads natural logarithm of a valder object argument
 h = valder(log(u.val), (1/u.val)*u.der);
end

function h = mpower(u,v)
 %VALDER/MPOWER overloads ^ with at least one valder object argument
 if ~isa(u,'valder') %u is a scalar
 h = valder(u^v.val, u^v.val*log(u)*v.der);
 elseif ~isa(v,'valder') %v is a scalar
 h = valder(u.val^v, v*u.val^(v-1)*u.der);
 else
 h = exp(v*log(u)); %call overloaded log, * and exp
 end
end