Likely you mean to be using favstats(). Each of these computes the mean, standard deviation, quartiles, sample size and number of missing values for a numeric vector, but favstats() can take a formula describing how these summary statistics should be aggregated across various subsets of the data.

fav_stats(x, ..., na.rm = TRUE, type = 7)

Arguments

x

numeric vector

...

additional arguments (currently ignored)

na.rm

boolean indicating whether missing data should be ignored

type

an integer between 1 and 9 selecting one of the nine quantile algorithms detailed in the documentation for stats::quantile()

Value

A vector of statistical summaries

Examples

fav_stats(1:10)
#>  min   Q1 median   Q3 max mean      sd  n missing
#>    1 3.25    5.5 7.75  10  5.5 3.02765 10       0
fav_stats(faithful$eruptions)
#>  min      Q1 median      Q3 max     mean       sd   n missing
#>  1.6 2.16275      4 4.45425 5.1 3.487783 1.141371 272       0
data(penguins, package = "palmerpenguins")

# Note: this is favstats() rather than fav_stats()
favstats(bill_length_mm ~ species, data = penguins)  
#>     species  min    Q1 median     Q3  max     mean       sd   n missing
#> 1    Adelie 32.1 36.75  38.80 40.750 46.0 38.79139 2.663405 151       1
#> 2 Chinstrap 40.9 46.35  49.55 51.075 58.0 48.83382 3.339256  68       0
#> 3    Gentoo 40.9 45.30  47.30 49.550 59.6 47.50488 3.081857 123       1