Fit a new model to data created using resample(model)
.
relm(model, ..., envir = environment(formula(model)))
a linear model object produced using lm()
.
additional arguments passed through to resample()
.
an environment in which to (re)evaluate the linear model.
mod <- lm(length ~ width, data = KidsFeet)
do(1) * mod
#> Using parallel package.
#> * Set seed with set.rseed().
#> * Disable this message with options(`mosaic:parallelMessage` = FALSE)
#> Intercept width sigma r.squared F numdf dendf .row .index
#> 1 9.817212 1.657624 1.024769 0.4110041 25.81878 1 37 1 1
do(3) * relm(mod)
#> Using parallel package.
#> * Set seed with set.rseed().
#> * Disable this message with options(`mosaic:parallelMessage` = FALSE)
#> Intercept width sigma r.squared F numdf dendf .row .index
#> 1 11.311765 1.475611 1.0454138 0.3469818 19.65998 1 37 1 1
#> 2 9.739407 1.670964 0.8886576 0.4853133 34.88839 1 37 1 2
#> 3 12.103496 1.425416 0.8519418 0.4274531 27.62353 1 37 1 3
# use residual resampling to estimate standard error (very crude because so few replications)
Boot <- do(100) * relm(mod)
#> Using parallel package.
#> * Set seed with set.rseed().
#> * Disable this message with options(`mosaic:parallelMessage` = FALSE)
sd(~ width, data = Boot)
#> [1] 0.3410556
# standard error as produced by summary() for comparison
mod |> summary() |> coef()
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 9.817212 2.9381078 3.341338 1.915251e-03
#> width 1.657624 0.3262257 5.081218 1.097225e-05