This augmented version of chisq.test()
provides more verbose
output.
xchisq.test(
x,
y = NULL,
correct = TRUE,
p = rep(1/length(x), length(x)),
rescale.p = FALSE,
simulate.p.value = FALSE,
B = 2000,
data = environment(x)
)
as in chisq.test()
, but
x
may also be a formula, in which case x
is replaced by tally(x, data)
prior to the call to chisq.test()
.
a data frame for use when x
is a formula.
# Physicians' Health Study data
phs <- cbind(c(104,189),c(10933,10845))
rownames(phs) <- c("aspirin","placebo")
colnames(phs) <- c("heart attack","no heart attack")
phs
#> heart attack no heart attack
#> aspirin 104 10933
#> placebo 189 10845
xchisq.test(phs)
#>
#> Pearson's Chi-squared test with Yates' continuity correction
#>
#> data: x
#> X-squared = 24.429, df = 1, p-value = 7.71e-07
#>
#> 104.00 10933.00
#> ( 146.52) (10890.48)
#> [12.05] [ 0.16]
#> <-3.51> < 0.41>
#>
#> 189.00 10845.00
#> ( 146.48) (10887.52)
#> [12.05] [ 0.16]
#> < 3.51> <-0.41>
#>
#> key:
#> observed
#> (expected)
#> [contribution to X-squared]
#> <Pearson residual>
xchisq.test(sex ~ substance, data = HELPrct)
#>
#> Pearson's Chi-squared test
#>
#> data: x
#> X-squared = 2.0264, df = 2, p-value = 0.3631
#>
#> 36 41 30
#> ( 41.81) ( 35.90) ( 29.29)
#> [0.8068] [0.7236] [0.0173]
#> <-0.898> < 0.851> < 0.131>
#>
#> 141 111 94
#> (135.19) (116.10) ( 94.71)
#> [0.2495] [0.2238] [0.0053]
#> < 0.500> <-0.473> <-0.073>
#>
#> key:
#> observed
#> (expected)
#> [contribution to X-squared]
#> <Pearson residual>