These functions behave similarly to the functions with the initial x
removed from their names but add more verbose output and graphics.
xpnorm(
q,
mean = 0,
sd = 1,
plot = TRUE,
verbose = TRUE,
invisible = FALSE,
digits = 4,
lower.tail = TRUE,
log.p = FALSE,
xlim = mean + c(-4, 4) * sd,
ylim = c(0, 1.4 * dnorm(mean, mean, sd)),
manipulate = FALSE,
...,
return = c("value", "plot")
)
xqnorm(
p,
mean = 0,
sd = 1,
plot = TRUE,
verbose = TRUE,
digits = getOption("digits"),
lower.tail = TRUE,
log.p = FALSE,
xlim,
ylim,
invisible = FALSE,
...,
return = c("value", "plot"),
pattern = c("stripes", "rings")
)
xcnorm(
p,
mean = 0,
sd = 1,
plot = TRUE,
verbose = TRUE,
digits = getOption("digits"),
lower.tail = TRUE,
log.p = FALSE,
xlim,
ylim,
invisible = FALSE,
...,
return = c("value", "plot"),
pattern = "rings"
)
quantile
parameters of normal distribution.
logical. If TRUE, show an illustrative plot.
logical. If TRUE, display verbose output.
logical. If TRUE, return value invisibly.
number of digits to display in output.
logical. If FALSE, use upper tail probabilities.
logical. If TRUE, uses the log of probabilities.
limits for plotting.
logical. If TRUE and in RStudio, then sliders are added for interactivity.
additional arguments.
If "plot"
, return a plot. If "values"
, return a vector of numerical values.
probability
One of "stripes"
or "rings"
. In the latter case, pairs of regions
(from inside to outside) are grouped together for coloring and probability calculation.
histogram()
,
chisq.test()
,
pnorm()
,
qnorm()
,
qqmath()
, and
plot()
.
xpnorm(650, 500, 100)
#>
#> If X ~ N(500, 100), then
#> P(X <= 650) = P(Z <= 1.5) = 0.9332
#> P(X > 650) = P(Z > 1.5) = 0.06681
#>
#> [1] 0.9331928
xqnorm(.75, 500, 100)
#>
#> If X ~ N(500, 100), then
#> P(X <= 567.449) = 0.75
#> P(X > 567.449) = 0.25
#>
#> [1] 567.449
xpnorm(-3:3, return = "plot", system = "gg") |>
gf_labs(title = "My Plot", x = "") |>
gf_theme(theme_bw())
#>
#> If X ~ N(0, 1), then
#> P(X <= -3) = P(Z <= -3) = 0.00135 P(X <= -2) = P(Z <= -2) = 0.02275 P(X <= -1) = P(Z <= -1) = 0.15866 P(X <= 0) = P(Z <= 0) = 0.50000 P(X <= 1) = P(Z <= 1) = 0.84134 P(X <= 2) = P(Z <= 2) = 0.97725 P(X <= 3) = P(Z <= 3) = 0.99865
#> P(X > -3) = P(Z > -3) = 0.99865 P(X > -2) = P(Z > -2) = 0.97725 P(X > -1) = P(Z > -1) = 0.84134 P(X > 0) = P(Z > 0) = 0.50000 P(X > 1) = P(Z > 1) = 0.15866 P(X > 2) = P(Z > 2) = 0.02275 P(X > 3) = P(Z > 3) = 0.00135
#>
if (FALSE) {
if (rstudio_is_available() & require(manipulate)) {
manipulate(xpnorm(score, 500, 100, verbose = verbose),
score = slider(200, 800),
verbose = checkbox(TRUE, label = "Verbose Output")
)
}
}