These versions of the quantile functions take a vector of central probabilities as its first argument.
vector of probabilities.
vector of means.
vector of standard deviations.
logical. If TRUE, uses the log of probabilities.
One of "upper", "lower", or "both" indicating whether a vector of upper or lower quantiles or a matrix of both should be returned.
degrees of freedom (\(> 0\), maybe non-integer). df
= Inf
is allowed.
non-centrality parameter \(\delta\);
currently except for rt()
, only for abs(ncp) <= 37.62
.
If omitted, use the central t distribution.
qnorm(.975)
#> [1] 1.959964
cnorm(.95)
#> lower upper
#> [1,] -1.959964 1.959964
xcnorm(.95)
#>
#> If X ~ N(0, 1), then
#> P(X <= -1.959964) = 0.025 P(X <= 1.959964) = 0.975
#> P(X > -1.959964) = 0.975 P(X > 1.959964) = 0.025
#>
#> [1] -1.959964 1.959964
xcnorm(.95, verbose = FALSE, return = "plot") |>
gf_refine(
scale_fill_manual( values = c("navy", "limegreen")),
scale_color_manual(values = c("black", "black")))
#> Scale for fill is already present.
#> Adding another scale for fill, which will replace the existing scale.
#> Scale for colour is already present.
#> Adding another scale for colour, which will replace the existing scale.
cnorm(.95, mean = 100, sd = 10)
#> lower upper
#> [1,] 80.40036 119.5996
xcnorm(.95, mean = 100, sd = 10)
#>
#> If X ~ N(100, 10), then
#> P(X <= 80.40036) = 0.025 P(X <= 119.59964) = 0.975
#> P(X > 80.40036) = 0.975 P(X > 119.59964) = 0.025
#>
#> [1] 80.40036 119.59964